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Abstract: It has been realized in the last few decades that ocean and other natural water bodies cannot receive 

infinitely large volumes of waste materials.  Further the growing need in recent years for the water quality 

conservation requires monitoring and controlling the entry of these wastes and keeping their concentration below 

safe levels in the receiving waters.  These have lead to studies to improve current understanding of the diffusion 

process and for prediction of how much the natural water bodies can disperse and absorb pollutants without 

causing permanent damage to the ecological system. The accuracy of predictions from mathematical models 

depend on how well the physical processes are modeled by the governing equations and how good are the methods 

to solve these problems. In this study an alternative numerical scheme named NEighborhood Separation 

Technique has been applied to solve advection diffusion problems 

Keywords: Advection-Diffusion –Numericl schemes- NEighborhood Separation Technique. 

I.   INTRODUCTION 

In the past 20 years, tremendous amounts of research has been done in developing and utilizing modern high-resolution 

methods for approximating solutions of hyperbolic systems of conservation laws. Among these methods, the flux-

corrected transport (FCT) method [1 –6] and the total variation diminishing (TVD) schemes [7 –10] are commonly used 

discretization schemes of this class. Modelling of transport problems becomes a great challenge in fluid mechanics. Even 

though conventional first-order finite difference methods (e.g. first-order upstream and Lax–Friedrichs schemes) are 

monotonic and stable, they are also powerfully dissipative. The solutions of conventional first-order finite difference 

methods are often found to be inaacurate. In the past 30 years, large number of research has been done in developing and 

makes use of modern high-resolution methods for approximating the result of hyperbolic systems of conservation laws. 

Among these methods, the flux-corrected transport (FCT) method [1 –6] and the total variation diminishing (TVD) 

schemes [7 –10] are commonly used discretization schemes of this class. 

II.   NEIGHBORHOOD SEPARATION TECHNIQUE (NEST) 

An alternative numerical scheme, called the Neighborhood Separation Technique (NEST), proposed by [11] to solve 

advection-dispersion problems, has been presented and solved one dimensional problems. 

This scheme uses Lagrangian method to model both diffusion and advection, unlike the mixed Euler–Lagrangian 

approaches, 

o requires far less computations compared to Lagrangian methods,  

o numerically solves the equation defining the Fick’s first law, and  relates the mass flux due to molecular or turbulent 

mixing to the average particle separation speed,  

o is mass conservative and free from numerical diffusion, and  

o can be applied to a wide variety of advection-diffusion problems.  
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In this approach a dispersing patch is represented by a cluster of small patches, and the mass of each patch is set 

proportional to the dispersing material in each patch and it remains constant with time in the case of conservative 

dispersing substance.  With time, these patches get separated further and further away through the process of molecular or 

turbulent dispersion.  The mass flux due to dispersion defined by Fick’s law is related to the average particle separation 

speed.  The speed of separation of these patches from their neighbors and the extent of separation in small incremental 

time steps are estimated.   In this approach the advective movements of these patches are independently estimated given 

the mean flow field.    

A. Basics of NEST  

To make the explanation simpler, we will discuss here only the basics of NEST for one-dimensional diffusion problem.  

Consider two neighbouring dispersing patches or segments in a flow field between three points along the x-axis shown in 

Fig.1.   The concentrations of the dispersing substance at these points or nodes be C1, C2 and C3 respectively.  Then the 

Fick’s first Law in the finite difference form can be approximated as, 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Discretized concentration distribution 
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where q, the mass flux of dispersing substance along the x-direction across the section at the point 2 per unit area is 

expressed as a product of the concentration 2C at the node 2 and the average separation speed du  due to dispersion 

process.    is the dispersion coefficient, s1 ≡ (x2 - x1) and s2 ≡ (x3 - x2).  Eqn. (5.31) can also be approximated in terms of 

the dispersing masses in the two segments as follows, 
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Here du  can be considered as the Lagrangian average separation speed of the interface at the node two, or the above 

relation can be interpreted as a Lagrangian equivalent of Fick’s first Law of diffusion. This gives the displacement of the 

central node as, 
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Expressing 2x  in terms of the masses of the dispersing substance in neighboring patches is preferable, since the mass of 

the dispersing substance between two neighboring nodes remains constant with time.  The displacement of the nodes due 

to the advective movements are independently estimated given the mean flow field, and added to 2x .   Now given the 

initial concentration distribution,
o

iC , the displacement ix  of all the nodes after an incremental time t  can be 

estimated.  Then the spacing between the nodes can be updated 

Since the spacing between the nodes change with time, the concentration distribution also changes.   But the mass 

between any two nodes during the evolution of the patch remains constant with time.  Hence in the i-th segment at time 

n t , we have,   
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where 
n

iC is the concentration of the dispersing substance at the i-th node and 
n

is is the i-th segment length at time n t  

(Fig. 4.3).  Note that iM , the mass of the dispersing substance between nodes remains constant with time.  Writing down 

the above relation for the chosen m segments in the solution domain we get the matrix relation,    
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The above matrix equation can be solved for
n

iC , given the boundary conditions. The performance of this technique has 

been demonstrated by Wong et al. through simulations of a few one and two dimensional dispersion problems and field 

dispersion problems.   But more extreme test cases and field dispersion problems need to be simulated using this approach 

to understand the versatility of this method.  

 

B. Results and discussion: 

NEighbhorhood Separation Techniques: This Technique is used to solve the advection –diffusion for a one 

dimensional flow. The steps followed in this method are given below  

1. For pure diffusion problems, using  Eulerian formulation and Fick’s law,
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Solution of this equation for an instantaneous release of mass M of a substance at x=0 and t=0 is given by, 
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2 .This concentration distribution can be considered as a dispersion of a finite number of discrete particles and the 

probability of finding a particle at x and t is related to the concentration distribution, 
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The mean square of separation of all pairs of particles can be shown to be 
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3. Dispersing patch originating from number of instantaneous point sources is given by 
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Any concentration profile can be considered as super position of concentration originating several points. 

4. Particle separation rule:
 

Any concentration profile can be considered as super position of concentration originating several point sources. 
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Fick’s law is equivalent to the particle separation rule. 

The particle separation rule can be interpreted as a langrangian equivalence of Fick’s law of diffusion. 
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6.  One dimensional advection diffusion problem
2
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In the NEST method displacement of dispersing particles are calculated as follows    
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7. Test cases to be solved   :(a)  1-d  pure diffusion problem 
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(b).1-D advection  diffusion problem 
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Estimate the distribution at t = 6000s & 12000s. For 1-D Advancing front Problem is solved by changing the time interval 

  t value.          

 Numerical results: 

The proposed NEighborhood Separation Techniques is solved for a number of advection dominated problems. The 

scheme is used to advect a Gaussian concentration distribution for the consistent flow at a constant velocity of u=1m/s. 

For 100 particles of equal mass, the sharp Gaussian distribution is described, when  c(x,0)=1.0exp(-x2 σ2),σ 264m .The 

computed concentration distribution for time t=6000secs and 12000 seconds along with the analytical solution is shown in 

figure Figure.1. For pure advection case the Langrangian scheme creates little problem but generally this models the 

advection exactly.The scheme is asked to advect a Gaussian concentration distribution at a constant velocity of u = 0.5 

m/s in a uniform flow. The sharp Gaussian distribution, c(x,0) =1.0exp(-x
2
 σ

2
 ),σ  264m is described by 200 equal mass 

particles with the same standard deviation. Figure .1 shows the computed concentration distribution at t = 6000 s and 

12000 s along with the exact solution. 

 

Figure 1: Pure advection simulation (u=1m/s) 
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The numerical solution of the pure diffusion equation for E=2m
2
/s, and E∆t s

2
=0.5 is shown in figure.2. Numerical 

solution is shown for a constant particle size; the time step is set following compatibility requirement as shown by the 

equations, The performance of the method by different time steps using the numerical solution at time t=12000seconds 

and the time variation of the location of the centre of the particle are shown. 

 

Figure 2: Pure Diffusion using Neighbhor hood Separation Technique (NEST), E=2m2/s 

The results show that the scheme has small violation of the stability when E value increases and the rquirement does not 

destroy the calculation instantly, even though oscillations in the results about the exact solution can be seen. Root mean 

square error of the numerical solution is 0.0089. The performances of the model for two different time steps are shown in 

figure 3 and 4. 

The results of the particle separation method is compared with the solution of the same problem at t=12000seconds using 

the random walk method. To achieve similar accuracy by random walk method, the particle required is generally larger by 

one to two orders of magnitude. Because the method is capable to model advection and diffusion individually, there is 

small problem when the entire advective- diffusion is modelled as shown in figure.4 

 

Figure 3: Numerical solution of pure diffusion. Concentration profile at t=12000seconds  and E∆t/s2=0.15 

Figure.5 represents, the advection and diffusion modelling for different time interval and it shows there a little problem 

since it is capable of solving advection and diffusion separately. For high Peclet numbers, when the concentration 

gradients near the front, it is difficult to simulate precisely in most of the Eulerian schemes. Due to random particle 

fluctuation, it is hard to maintain an exact constant concentration for Random walk model. These problems were not 

found in the present scheme because there are no spatial grids which rely upon to capture the concentration distribution. 
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Figure 4: Numerical solution of pure diffusion. Concentration profile at t=12000 seconds and E∆t/s2=0.6 

 

Figure 5: Simulation of advective –diffusion. 

III.   CONCLUSION 

The main advantage of the Neighborhood separation technique is that, it has the ability to model particle attributes with a 

small number of langragian particles. This method is generally used to solve Advection–Diffusion problem without 

causing oscillations. The additional advantage of this method is that, it can able to solve Advection dominated problems, 

where other methods are not able to give accurate deterministic results without causing numerical diffusion. Also, when 

the stability parameter is increased to some extent, by changing the values of E∆t S
2
, it gives a good result.  This method 

simulates the diffusion process via an equivalent macroscopic motion. It can able to model the diffusion process 

deterministically and accurately in a particle model by means of the Langragian implementation of Fick’s law. It can be 

concluded that, it requires less number of particles compared to random walk method and it can be used to model the 

ecological problems. 
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